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Diffraction at small M2/Q2 in the QCD dipole picture
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Abstract. Using the QCD dipole picture of BFKL dynamics, the quasi-elastic component of the diffractive
γ∗-dipole cross-section, dominating at small M2/Q2, is calculated.

1 Introduction

Diffraction dissociation of virtual photons, a process on
the border line between the perturbative and non-pertur-
bative regions, represents a challenging problem for quan-
tum chromodynamics [1]. It is therefore of no surprise that
it became a subject of numerous studies by various meth-
ods [2]–[12].

The present investigation continues our effort [6]–[8]
to reach a unified description of both total and diffrac-
tive cross-sections of virtual photons in the framework of
the QCD dipole picture of high-energy interactions [9,10].
More precisely, it is an attempt to obtain, within the ap-
proximations inherent to the QCD dipole model, an exact
formula for the quasi-elastic component [6] of the (virtual)
photon diffractive dissociation at arbitrary fixed momen-
tum transfer. It is a generalization of a recent calculation
[8] of the forward photon diffractive processes. The need
for an exact formula is emphasized by (i) recent success
of the approximate dipole model description [11,12] of the
HERA data [13] and (ii) improved accuracy of recent mea-
surements [14] which provide the first results on momen-
tum transfer dependence of diffractive structure functions.

We restrict ourselves to the so-called quasi-elastic com-
ponent of the diffractive cross-section, dominating at small
M2/Q2, whereM is the mass of the diffractive system pro-
duced and Q is the virtuality of the photon. The calcula-
tion of the high mass component at non-zero momentum
transfer was presented in [7].

In the QCD dipole picture the cross-section for the
quasi-elastic scattering of a virtual photon on a single
dipole target can be written as [6]

dσ
dM2d2pT

=
2Nc

4π2

∫
d2k

∣∣∣〈~k,M2|T qel
pT

|Q
〉∣∣∣2 . (1)

Here pT is the transverse momentum after the collision.
The transverse vector ~k = z ~k1 − (1 − z) ~k2 = (|k|, φk),
is such that ~k2 = M2z(1 − z) in the impact parameter

approximation1. By convention, the quark 3-momentum
is
(
(1 − z)Eγ , ~k1

)
and the antiquark

(
zEγ , ~k2

)
. In (1),

one has

〈
~k,M2|T qel

pT
|Q
〉

=
∫ 1

0

∫
d2r

〈
~k,M2|~r, z

〉
〈~r, z|TpT |~r, z〉

×Ψ(~r, z;Q). (2)

Here ~r = (|r|, φr) is the relative transverse distance in the
(qq̄) pair, z is the light-cone momentum fraction of one of
the quarks and 〈~r, z|TpT |~r, z〉 is the elastic amplitude for
scattering of the dipole of tranverse size r on the target
dipole of size r0. Ψ(~r, z;Q) are the light-cone photon wave
functions [15].

2 Calculations

Following the argument in [6] (c.f. also [8]), we can write
(1) in the form

dσ
dM2d2pT

=
2Nc

4π2

∫ 1

0
dz z(1 − z)

1
2
dφk

∣∣∣G(M̂, z, pT;xP)
∣∣∣2 , (3)

where

G(k, z, pT;xP) =
1
2π

∫
d2r eiM̂ṙ 〈~r, z|TpT |~r, z〉

×Ψ(r, z; Q̂) (4)

1 The formula (1) was derived in [6] in the impact parameter
approximation. Consequently it is valid only in the limit pT

Eγ
≡

2mppT
Q2 x � 1, appropriate at small x. Indeed, in this limit,

there is no difference between the initial and final transverse
plane.
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and M̂ is the vector of length

M̂ = M
√
z(1 − z) (5)

parallel to ~k. Equation (4) is the starting point of our
calculation.

The difficult part of the task is to perform the inte-
gration over d2r in (4). To this end we need an adequate
formula for the dipole–dipole amplitude 〈~r, z|TpT

|~r, z〉. For
pT = 0 an explicit formula is available [9] and this allowed
the calculation of [8]. For pT 6= 0, however, the calculation
is much more involved. In this paper we perform it using
the methods developed recently in [16].

The starting point is the general expression [17]

〈~r, z|TpT |~r, z〉 = 4πα2
n=∞∑

n=−∞

∫
dν
π

eω(n,ν)Y dn,ν

×|r|En,ν
pT

(r)|r0|Ēn,ν
pT

(r0), (6)

where

dn,ν =

{
16

[
ν2 +

(
n− 1

2

)2
][

ν2 +
(
n+ 1

2

)2
]}−1

,

(7)

ω(n, ν) =
2αNc

π

×
{
ψ(1) − Re

[
ψ

(
1
2
(|n| + 1) + iν

)]}
(8)

and En,ν
pT

(r) are eigenfunctions of the conformal operator
in the mixed representation defined in [17]. The explicit
expression for En,ν

pT
(r) is fairly complicated [16] but, for-

tunately, we shall not need it here. We quote, for future
reference, only the formula for En,ν

0 (r):

En,ν
0 (r) = |r|−2iνeinφr . (9)

The sum over n in (6) was introduced for technical reasons.
In the high-energy (large Y ) limit, the term with n = 0
dominates.

To proceed, it is useful at this point to introduce the
explicit formulae for Ψ(~r, z;Q). We write them in the form

Ψ(~r, z;Q) = CQ̂ ΦT,L(z)χT,L(r, Q̂) (10)

with Q̂ = Q
√
z(1 − z), C =

√
αeme(f)/2π (e(f) is the

charge of a quark) and

ΦT = z; ΦL = 2
√
z(1 − z);

χT = eiφrK1(Q̂r); χL = K0(Q̂r) . (11)

The subscripts T and L denote transverse (right-handed)
and longitudinal polarizations of the incident photon (for
left-handed photons one should replace z by 1− z). Using
(10), one obtains

GT,L(k, z, pT;xP) = D |r0|Q̂ΦT,L(z)

×
∑

n

∫
dν
π

dn,ν eω(n,ν)Y En,ν
pT

(r0)g
n,ν
T,L, (12)

where D ≡ 4πα2C = 2α2√αeme(f),

gn,ν
T,L(Q̂, M̂) =

1
2π

∫
d2rψT,L(r, Q̂, M̂)En,ν

pT
(r) (13)

and

ψT,L(r, Q̂, M̂) = eiM̂r χT,L(r, Q̂)|r| . (14)

We can now expand ψT,L(r, Q̂, M̂) in terms of conformal
eigenfunctions at pT = 0:

ψT,L(r, Q̂, M̂) =
∑

n

∫
dν ψn,ν

T,L(Q̂, M̂)
En,ν

0 (r)
|r|2 . (15)

The inverse tranform is

ψn,ν
T,L(Q̂, M̂) =

1
2π2

∫
d2r ψT,L(r, Q̂, M̂)En,ν

0 (r) (16)

and thus we obtain

gn,ν
T,L(Q̂, M̂) =

1
2π

∑
n′

∫
dν′ψn′,ν′

T,L (Q̂, M̂) In,n′,ν,ν′
pT

. (17)

We see that the integration over r is reduced to

In,n′,ν,ν′
pT

≡
∫

d2r
En,ν

pT
(r)En′,ν′

0 (r)
|r|2 , (18)

which was explicitly calculated in [16] with the result

In,n′,ν,ν′
pT

=
π

2
(−1)(n−n′)/2

[pT

8

]µ̃−µ̃′ [ p̄T

8

]µ−µ′

×Γ (1−µ)
Γ (µ̃)

Γ (µ+ µ′/2)Γ (−µ+ µ′/2)
Γ (1−(µ̃+ µ̃′) /2)Γ (1−(µ̃′ − µ̃) /2)

, (19)

for n − n′ even and 0 for n − n′ odd. Here µ =iν − n/2,
µ̃ =iν + n/2 .

We can now calculate ψn,ν(Q̂, M̂). From (16) and (9)
we have

ψn,ν
T,L(Q̂, M̂) =

1
2π2

∫
d2r ψT,L(r, Q̂, M̂) | r |−2iν einφk ,

(20)

where φk is the r azimuthal angle with respect to pT.
Using∫

dΨ eiM̂ρ cos Ψ±imΨ ≡ 2π eimπ/2 Jm(M̂ρ), (21)

we find for right-handed photons (for left-handed photons,
n+ 1 should be replaced by n− 1)

ψn,ν
T (Q̂, M̂) =

1
π

∫
r2dr r−2iνexp

(
i(n+ 1)

π

2
− iφk

)
×Jn+1(M̂r) K1(Q̂r) . (22)

For the longitudinal photons we obtain

ψn,ν
L (Q̂, M̂) =

1
π

∫
r2dr r−2iνeinπ/2Jn(M̂r) K0(Q̂r).(23)
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Using well-known relations, we have

∫ ∞

0
dρ ρ−λ Kh(Q̂ρ) Jl(M̂ρ)

=
1
4

(
M

Q

)l
(
Q̂

2

)λ−1

×Γ
( 1−λ+l+h

2

)
Γ
( 1−λ+l−h

2

)
Γ (l + 1)

×2F1

(
1−λ+l+h

2
,
1−λ+l−h

2
, l+1;−M2

Q2

)
(24)

and

2F1

(
1 − λ+ l + h

2
,
1 − λ+ l − h

2
, l + 1; −M2

Q2

)

= (β)
1−λ+l−h

2 (25)

×2F1

(
1 − λ+ l − h

2
,
1 + λ+ l − h

2
, l + 1; 1 − β

)

where h and l are positive integers; thus we find

ψn,ν
T,right(Q̂, M̂)

=
1
4π

exp
(

−iπ
n+ 1

2
− iφk

) (
M

Q

)|n+1| (
Q̂

2

)2iν−3

×Γ (−iν + 2+ | n+ 1 | /2) Γ (−iν + 1+ | n+ 1 | /2)
Γ (| n+ 1 | +1)

×(β)−iν+1+|n+1|/2

×2F1
(− iν + 1 +

| n+ 1 |
2

,
| n+ 1 |

2
+iν − 1, | n+ 1 | +1; 1 − β

)
, (26)

ψn,ν
L (Q̂, M̂)

=
1
4π

exp
(
iπ
n

2
− iφk

) (M
Q

)|n| (
Q̂

2

)2iν−3

×Γ 2 (−iν + 3/2+ | n | /2)
Γ (| n | +1)

(β)−iν+3/2+|n|/2

×2F1
(− iν +

3
2

+
| n |
2
,
| n |
2

+iν − 1
2
, | n | +1; 1 − β

)
. (27)

Next we write

rT (ν1, ν2) = 2B (−iν2 + iν1 + 2,−iν2 + iν1) ,
rL (ν1, ν2) = 4B (−iν2 + iν1 + 1,−iν2 + iν1 + 1) , (28)

which are factors coming from integrals over the variable
z (the factor 2 in rT comes from summing over photon

helicities). All in all, we obtain

dσ
dM2d2pT

=
Nc

2π

∫ 1

0
dz z(1 − z)

∣∣∣G(M̂, z;xP)
∣∣∣2

=
Nc

8π
Q2D2

×
∑
n1

∫
dν1
π

eω(n1,ν1) Y dn1,ν1 | r0 | Ēn1,ν1
pT

(r0)

×
∑
n2

∫
dν2
π

eω(n2,ν2) Y d̄n2,ν2 | r0 | En2,ν2
pT

(r0)

×
∑
n′

1

∫
dν′

1

π
ψ

n′
1,ν′

1
T,L (Q,M) In1,n′

1,ν1,ν′
1

PT

×
∑
n′

2

∫
dν′

2

π
ψ̄

n′
2,ν′

2
T,L (Q,M) Īn2,n′

2,ν2,ν′
2

PT
rT,L (ν′

1, ν
′
2) .

(29)

This completes the calculation.
Note that at pT = 0, we have

Inn′,νν′
0 = 2π2δnn′δ(ν − ν′) (30)

and thus, using (9), we obtain

dσ
dM2d2pT

|pT=0= 8παemα
4Nce2

f

(
Qr0
2

)2

×
∑
n1

( ∫ dν1
π

eω(n1,ν1) Y dn1,ν1(r0)
2iν1ψn1,ν1

T,L (Q,M)
)

×
∑
n2

( ∫ dν2
π

eω(n2,ν2) Y

× d̄n2,ν2(r0)
−2iν2 ψ̄n2,ν2

T,L (Q,M) rT,L (ν1, ν2)
)
, (31)

which, for n1 = n2 = 0, is identical to the result obtained
in [8].

3 Results

To obtain more insight into the PT dependence of the
cross-section given by (29), it is useful to evaluate the
integrals over ν′

1 and ν′
2 in terms of residues of the relevant

poles of the integrands. To this end we observe that the
convergence properties of these integrals are determined
by the factor (

1
p̂T

)2iν′

≡
(

4Q
PT

√
β

)2iν′

. (32)

This factor is easily identified when the explicit expres-
sions (19), (22) and (23) are introduced into the product
Ψn′,ν′

T,L (Q,M) In,n′,ν,ν′
PT

. Thus for

p̂T ≡ PT
√
β

4Q
< 1, (33)
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the contour integrals in ν′
1 and ν′

2 must be chosen in
the lower half of the complex plane, so only the poles
at Re(iν′) ≤ 0 contribute. The integrals are given by the
residues of the moving poles iν′ = ±iν − 2p leading to
an expansion in terms of powers (p̂T)4p of the “reduced”
transverse momentum (33). Thus one obtains

dσ
dM2d2PT

= 8παemα
4Nce2

f

(
Qr0
2

)2

×
∑
n1

( ∫ dν1
π

eω(n1,ν1) Y dn1,ν1

×Ēn1,ν1
PT

(r0)ψ
n1,ν1
T,L (Q,M)

)
×
∑
n2

( ∫ dν2
π

eω(n2,ν2) Y d̄n2,ν2

×En2,ν2
PT

(r0)ψ̄
n2,ν2
T,L (Q,M) rT,L (ν1, ν2)

)
×
[
1 + O (p̂T)4

]
. (34)

On the other hand, for larger PT,2

p̂T ≡ PT
√
β

4Q
> 1, (35)

the contour integrals must be closed on the upper half
of the complex plane. Consequently, only poles of the Ψ
functions at <(iν′) > 0 contribute. The integrals are thus
given by fixed poles at iν′ = 3/2 + 2p and iν′ = 5/2 + 2p
leading to an expansion independent of ν, resulting in a
series expansion in powers of 1/p̂T. The two regimes are
thus governed by different types of singularities, as was
already noticed about vertices of BFKL pomerons [16,18].

4 Concluding remarks

(a) The presented calculation extends the results in [8]
to non-vanishing momentum transfer and thus, together
with [7], where the large mass component was calculated,
it completes the derivation of the hard diffractive cross-
section in the QCD dipole picture.

(b) The pT dependence in (29) and (34) may be mod-
ified by the proton form factor and possibly other non-
perturbative effects. As the same effects would operate
also for the large mass component in [7], one may hope
that the relative weight of the two components is rea-
sonably well described by our result. A comparison with
data should therefore be a significant test of the dipole
approach. It would be particularly interesting to compare
this new result with the satisfactory description of data
obtained in an approximate version of the dipole model
[12].

(c) Our formulae (29) and (34) sum over all confor-
mal spin values n allowed by selection rules of the BFKL
vertices [16]. At high energies the term with n = 0, cor-
responding to the so-called hard pomeron [1], dominates.

2 But not too large, see footnote 1.

Consequently the phenomenological discussion is usually
restricted to n = 0. As argued recently [19], however, the
analysis of total cross-section data [20] allows the interpre-
tation of the next term in the expansion, namely n = 2,
as being at the origin of the so-called soft pomeron [21].
Our formula can thus provide an independent test of this
hypothesis in hard diffraction dissociation.

(d) It would be interesting to verify if the results can
be directly derived from Feynman diagrams, as is the case
for the high mass diffraction processes [2].

Using the QCD dipole picture of BFKL dynamics we
have calculated the quasi-elastic component of the diffrac-
tive γ∗-dipole cross-section, dominating at small M2/Q2.
This work, together with [7], completes the calculation
of hard diffraction in the framework of the QCD dipole
model and thus allows an extension of the previous phe-
nomenological analyses based on approximate formulae
[11,12]. This should in turn allow perturbative and non-
perturbative QCD contributions to the diffraction on the
proton target to be separated. Finally, let us note that the
formulae obtained in [7] and here can easily be general-
ized to γ∗ − γ∗ interactions and thus provide a basis for a
phenomenological analysis of future collider data.
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